[미적분] calculus(미적분) differential calculus(미분)
페이지 정보
작성일 20-10-01 17:44
본문
Download : 4_Differential_Calculus.hwp
4. Differential Calculus
Definition of Derivative
Example 7. Continuity of functions having derivatives.
Theorem 4.1.
Theorem 5.2. Chain Rule.
4. Differential Calculus
Definition of Derivative. The derivative f`(x) is defined by the equation
f`(x) = , provided the limit exists. The number f`(x) is also called the rate of change of f at x.
Hint. an - bn = (a-b)
Hint. sin x - sin y = 2 sin cos
Hint. = 1
Hint. cos x - cos y = -2 sin sin
Example 7. Continuity of functions having derivatives. If a function f has a derivative at a point x, then it is also continuous at x (반대는 성립 X일수도)
- f(x+h) = f(x) + h()
- Continuity : (a) f is defined at p
(b)
Theorem 4.1. Let f and g be two functions defined on a common interval. At each point where f and g have a derivative, the same is true of the sum f+g, the difference f-g, the product f ? g, and the quotient f/g. (For f/g we need the extra proviso that g is not zero at the point in question.) The derivatives of these functions are given by the following formulas :
(i) (f + g)` = f` + g`
(ii) (f - g)` = f` - g`
(iii) (f ? g…(skip)
시험대비 theorem(요약)과 definition(정의)를 보기 좋음.
전문자료/시험자료
미적분의 미분에 대해 영어 자료 정리시험대비 theorem(정리)과 definition(정의)를 보기 좋음. , [미적분] calculus(미적분) differential calculus(미분)시험자료전문자료 , 미적분 미분 적분 calculus
[미적분] calculus(미적분) differential calculus(미분)
순서
미적분의 미분에 대해 영어 資料 요약



설명
Download : 4_Differential_Calculus.hwp( 22 )
미적분,미분,적분,calculus,시험자료,전문자료
다.